FACTOR 2

DEPARTHEN/(I)F PO!&C SCIENCE
IRN \\\\\\
8 UNIVERSITY OF HAWAI

TAl - PAK —+
HAI'Y
PHL *COS *PER
) T .eoL GRC
CHL ELS ’
\ Re B,
_/L

NATIONAL TECHN I
NFORMATION SER \fl%lé

i, Va. 2218y

MENSIONALITY
IONS PROJECT

FACTOR 1|

,GUA ARG\ \
URA +IND

USR¢ze
YEMSKH

The Dimecnsionality of Nations Project
Department of Political Science
University of Hawaii

RESEARCH REPORT NO. 53
DYNA: DYNAMIC STORAGE ALLOCATIONW
IN FORTRAN FOR THE IBM/360 OPERATING SYSTEM
4lan C. H. Kam

and
Charles F. Wall

April 1971

Prepared in connection with research supported by the Advanced Research
Projects Agency, ARPA Order No. 1063, and monitored by the Office of
Naval Research, Contract No. NOQOl4-~67-A-0387~0003.

This document has been approved for public release and sale; its
distribution is unlimited and reproduction in whole or in part is
permitted for any purpos of the United States Government.

BLANK PAGE

UNCLASSIFIED

Security Classificuation

DOCUMENT CONTROL DATA-R&D

1Secunty clasatlication ol title, body ol abutract and tndexing unnotution munt e entered when the uv.rail eepoet Iy clasailied)

t OMIGIN ATING ACTIVITY (Corparats author)

DIMENSIONALITY OF NATIONS PROJECT

20, REFPORT BECUNRITY CLASSIFICATION

UNCLASSITIED

2b. GROuPr

)3 REPORT TiTLE

DYNA: DYNAMIC STORAGE ALLOCATION IN FORTRAN FOR THE IBM/360 OPERATING SYSTEM.

4 DESCRIPTIVE NOTES (Type ol repor: and Inclusivs detss)

Research Repurt No. 53

% AUTHOR(S) (’hu name, middle Initial, laet name)

KAM, Alan C. H. and Charles F. Wall

Jc REPORT OATE

78, TOTAL NO. OF PAGES b NO OF mEFS

b. PROJEC T NO.

d.

April 1971 15 5 ’
Ja CONTRACT OR GRANT NO. 95. ORIGINATOR'S REPORT NUMBE R(B)
N00014-67~-A-0387-0003

Regearch Report No. 53

85, CTHER REPOAT NOIS) (Any other numbers thal may de assigned

this report)

10. DISTRIBUTION STATEMENT

United States Government,

This document has been approved for public release and sale; its distribution is
unlimited and reproduction in whole or in part ic permitted for any nurpose of the

T—
11. BUPPLEMENTARY NOTYTES

2500 Campus Road
Honolulu, Hawaii 96822

12. SPONBORING MILITARY ACTIVITY

Advanced Research Projects Agency
Washington, D.C.

177 ASsTRACT

allocation subroutine DYNA.

It

DD o™ 1473 (PAGE 1)

S/H 0101.807.6801

[

This report describes an I.B.M./360 Assembly Language routine to
allow for dynamic allocation of core storage in Fortran programs. The
report describes in detail the implementation and use of the cdvynamic

A fairly detailed knowlndge of FORTRAN is assumed in the report.
The dynamic routine may be implemented hv the FORTRAN programmar
without e detailed understanding Assembly Language routine “YNA., A
complete description of DYNA i3 included,for those programmers who
The discussion is technical and assumes a knowledge of
I1.B.M./360 Operating System Macros and Assembly Language.

T ¥ P

e e

UNCLASSIFIED

Securnity Clacsification

e e —————— -

UNCLASSIFIED

ﬁccuvhy Clesallication

REY WORODS

LCINK A LiNkK 8 LiNn €

ROLR

wr ROLE wy "OLE wy

DYNAMIC STORAGE ALLOCATION

DD "3V..1473 (eace)

(PAGE 2)

W S U N N

UNCLASSIFIED

ﬁn-ﬂyéﬁ?uﬁ&nhn

The Dimensionality of Nations Project
Department of Political Science
University of Hawaii

DYNA: DYNAMIC STORAGE ALLOCATION
IN FORTRAN FOR THE IB4/360 OPERATING SYSTEM

ABSTRACT

This report describes an I.B.M./360 Assembly Language routine to
allow for dynamic allocation of core storage in Fortran programs. The
report describes in detail the implementation and use of the dynamic
allocation subroutine DYNA.

A fairly detailed knowledge of FORTRAN is assumed in the report.
The dynamic routine may be implemented by the FORTRAN programmer
without a detailed understanding of the Assembly Language routine
DYNA. A complete description of DYNA is included. The discussion
is technical and assumes a knowledge of I.B.M./360 Operating System

*lacros and Assembly Language.

DYNA: DYNAMIC STORAGE ALLOCATION
IN FORTRAN FOR THE IBM/360 OPERATING SYSTEM

Alan C. H. Kam
and
Charles F. Well

University of Hawaii

1. INTRODUCTION

A major limitation of Fortran is that storage for data is
alloceted at compile-time by the programmer. Essentially, some
opimum dimensions are selected, the program is compiled and fixed
amount of storagc is made aveilable. If a perticular problem requires
less space than is allocated, storege is wasted. If more space is
required than has been elloc-ted, the program must be redimensioned
and recompiled. In today's multiprogrammed systems. either situation
is an inefficient use of system resources.

A solution to the problem is to ellocate storage for data et
execution time, dynamically. The general rationale is that allocetion
of storage for data is a dynamic function that varies with each use of

a particular program.

2. DYNA: Dynamic Storage Allocation in Fortran for the IBM/360

DYNA is an assembly language subroutine thet provides an inter-
face between e Fortran program or subroutine and the opereting system's
(0.5.) main storege manager. Each time DYNA is called, storage is

allocated and made available to the Fortran subroutine.

2,
The next four sactions discuss :he 0.S. Getmain/Freemain facil-
ity, tha interface for these functions, and the Error Conditions en-

countarcd.l

2.1 PFortran Convention

Tha standard Fortran call is used to call DYNA and to allocate

storage. The order of the parameters is as follows:
CALL DYNA (SUB, ARRAY1l, NSIZEl, ..., ARRAYN, NSIZEN)

where

SUB is the name of the Fortran subroutine the storage is

allocated to

ARRAYN is the Nth array to be allocated

NSIZEN is the arount of storage in words of ARRAYN.

DYNA is callad by the calling Fortran routine which in turn calls
the Fortran subroutine SUB. SUB must be daclared EXTERNAL in the calling
routine and tha parameters must not appear in COMMON.

The parametar list is a 1list of the addressds of .epch_parameter
in the subroutina call. The first parameter is the address of the sub-
routine to be called by DINA. The last parameter has its high ordar
byte equal to 128. The call to DYNA consists of loading the address
of the parametar list in gencral ragister 1, loading the address of
DYNA in registar 15 and then branching to register 15 and linking
registar 14. Ragister 13 points to a save area within the calling

routine (standard 0.S. linkage convantion).

1810 References.

3.

2.2 0.S. Getmain/Freemain

Getmain is an SVC which requests the control program to assign
ownership of an area of main storage to a routine. This SVC has many
options and is conveniently coded as a macro in assembly language.
However, it has been hand coded in DYNA using the R and VU forms. The
R-form requests a specific amount of main storage in register 0. The
SVC returns the address of this area in general register 1. The VU-
form requests an amount of main storage between two ranges. If the
raquest cannot be satisfied, the control program will terminate the
calling routine (see Error Conditions). For this form, register 1
points to a parameter list with the appropriaste flag specifying the
VU-request.

The Freemain SVC frees the storage assigned by the Getmain.

Both the R and V forms are used and are hand coded.

2.3 The Interface

Upon entry to DYNA, the general registers are saved in an area
provided by the calling routine. Then the Getmain SVC issued to obtain
a work area is appropriately initialized.

The next phase is to process the parameter list and save the
address of the calling routine. The parameter requests are rounded up
in preparation for the double-word alignment. Once the total size of the
arrays has been calculated, the second Getmain is issued. The main
storage block allocated is used by DYNA to reallocate array addresses.
The original array addresses are replaced with the new double-word

aligned addresses. Thus, the initial parameters corresponding tc the

4,
addresses passed to DYNA of the arrays are replaced by the addresses
of the main storage area to be used.

DYNA then calls the subroutine whose address is given by the first
parameter in the list passed to DYNA. On return from the called sub-
routine DYNA frees the main storage allocated for the arrays and re-
establishes the linkage to the calling program. DYNA then frees the
work area allocated and returns to the calling routine.

- Since DYNA obtains a work area (activation list) upon entry and
frees this work at exit, DYNA is a re-entrant routine and may be called

by more than one program in aay order.2

2.4 Error Conditions

If there is no main storage available the system will abnormally
end (ABEND) with a code of S80A or S804. Other codes are possible but
have yet to be encountered.

If there i1s some storage availablc but not enough to satisfy
the request, DYNA calls $ERR1, an error routine written in Fortran
which has as an argument a vector with the following values: the
address of the core that was allocated, the amount the system could
allocate, the minimum requested size (usually zero) and the maximum size
requested.

$ERR2 18 called if the parameter list has the improper number
of arguments. There should always be an odd number of arzuments since
the first argument is the name of the Fortran subroutine called by

DYNA and all other arguments are the paired namcs and sizes. This

2See keferences.

5.
error exit occurs in the debugging stage and does not return control.

A message is printed and control is returned tc the system.

3. PROGRAMMING DYNAMIC ROUTINES

The use of DYNA is relatively straightforward. The subroutine
(DYNA) is reentrant and may be nested to any level. The tiadeoff is in
the time required to call DYNA in comparison to its eificient use of

space.

3.1 Some Rules

As mentioned in 2.1 standard Fortran is used to call DYNA.
The name of the subroutine to which DYNA will pass control must be
declared EXTERNAL in the routine calling DYNA. The narametexs in the
call statement must not appear in COMMON, If an array is to be DOUBLE
PRECISION, the size parameter must reflect this (e.g. ten words DOUBLE
PRECISION must be passed as twenty words). DYNA always allocates on double-~
word boundaries. If a particular array is doubly subscripted the

following form is not allowed in the called subroutine:

DIMENSION X(1,1)

Instead, the appropriate dimensions should be passed in COMMON and used

in the called program in the foilowing manner:

DIMENSION X(N,M)
COMMON N,M

For vectors, either form is acceptable.

3.2 An Added Advantage

If your program follows the normal Fortran convention of storing
arrays columnwise, the arrays may be dcubly-subscripted and calls
to subroutines, as in the Scientific Subroutinc Package, may be
called without conversion. Since we always allocate the exact amount
of storage needed by ecach array, the array may also be treated (in
separate routines) as a vector. Since it is useful to use doubly-
subscripted arrays for input/output and certain computations and
singly-subscripted arrays (vectors) for other computations it is
useful to be able to eliminate conversion problems. (For a more
complete discussion see IBM/Scientifi~ Subroutine Package-Programmers

Guide).

3.3 A Sample Program

Congider a program which calculate means, standavd deviations and
correlations. A gimple call to the IBM/SCP® subroutine CPRRE will suffice.
All I/6 will not be shown as the purpose is to demonstrate the use of
DYNA. We shall consider that we are calling the DOUBLE PRECISION version

of CORRE.

C -- THIS IS THE MAIN ROUTINE —
CHMMON N, M
EXTERKAL SUBC

C -- READ CANTROL CARD AND ALLECATE CORE
READ (5, 10) NROWX, NCPLX

10 FORMAT (213)

N = NROWX
M = NCOLX

20

10

7.
N1 = NROWX * 2
N2 = NCOLX * 2
N3 = N1 # N2
N4 = (N2 * (N2 +1))/2
CALL SUBC VIA DYNA
CALL DYNA(SUBC,X,N3,XBAR,N2,STD,N2,RX,N3,R,N4,B,N2,D,N2,T,N2)
STYP
END

THIS IS SUBROUTINE SUBC

SUBROUTINE SUBC(X,NA,XBAR,NB,STD,NC,RX,ND,R,NE,B,NF,D,NG, T,NH)
NOTICE THA™ IN THE SUBROUTINE WE

CANNOT HAVE DUPLICATE DUMMY NAMES

DIMENSION X(N,M),XBAR(1),STD(1),RX(1),R(1),B(1),D(1),T(1)
COMMPN M, M

READ IN DATA

DF201=1, N

READ (5,10) (X(I,J), J = 1, M)

FORMAT (10F8.0)

CALL CORRE

CALL CORRE (N,M,I,X,XBAR,STD,RX,R,B,D,T)

PRINT RESULTS

RETURN

3.4 User Documentation

Primarily, the user must know:

a) The formula to calculate the dynamic area; and

b) the amount of static storage used by the program and

buffers.

A simple test run with size = 1 for all dynamic data arrays will give
the base (e.g. amount of static storage). To be safe this should
be rounded up to the next even K bytes. The formula is determined by
the particular program. PFor example, the formula for our sample

program would be given as follows:

SIZE (in bytes) = (2 * N3 + 5 * N2 + N4) * 4
wvhere

N1 = Number of rows in X times 2

N2 = Number of columns in X times 2

N3 = N1 * N2

N4 = (N2 * (N2 + 1))/2

the region is = 3ASE + SIZE rounded up to ncxt even K bytes.

This 1s the estimate the usaer should supply on the EXEC card.

C — TO SUPPLY LESS.
C -~ RESULTS IN AN 80A;
C - TO SUPPLY MORE:

C - IS A WASTE FOR SURE:

9.

BELAEEREAEKARAT AR SRR RRERKXERRIREE SR AR KREREERPRRBEXNXKAERRR AR XXX RRERE R
. .
* OYNAMIC CORE ALLOCATION PROGRAM FOR FORTRAN PROGRAMS
* USING_OS MACRO GETMAIN_ FCR THE_ALLOCATION MECHANISM, _ ——
*
* 2. DOUBLE-WORD BOUNDARIES
*
* "CORE GUESTIMATION ALGORITHM
*
* LINKAGE EDITOR MAP_ TOTAL LENGTH)
* SYSIN/SYSPRINT 4K BYTES
* FOR N DD CARDS N#2K BYTES
* —_ —. _SUM (BLKSIZE*BUFNGC) L I
* TOTAL REQUIREMENTS (TOTAL LENGTH)+4K+N*2K+M
*
b bbdhbanadddd AL AL L LR L b ihbrthhbhhbbihdahdisd o il LI L LI
OYNA CSECT
STM 14,12,12(13) SAVE THE GENERAL REGISTERS
B LR 12415 m . ___._ _USE GR 12 AS THE BASE KEGISTER
USING DYNA,12 "TELL THE ASSEMBLER THE BASE IS
LR 291 SAVE REGISTER 1 FUR LATER.
—ee LA OySAVESI2ZE ___GR O HAS THE SIZE OF SAVE AREA
8AL Lo*+4 S T IBM CONVENTION FOR GETMAIN (R)
SvC 10 ! GET MAIN SVC
e —_.._USING _ _ DYNASAVE,1} _
LR 11,1 USE GR 11 AS SAVE BASE REGISTER
LR 1,2 RESTORE GR 1 TO CRIGIMAL VALUE
I _.ST_ _ . _ _13,SAVEAREA+4 SAVE GR 13 FOR LINKAGE
LA 134 SAVEAREA RESET THE LINKAGE ST T
ST 1.SAVEGR1
*x
® "7 UINITIALIZATIUN OF THE PARAMETER LISTS, AND CONSTANTS ~ = "7~
*
LA 34MINSIZE L
ST “3,GETSIZE Tt T B S T
LA 3,.FREEAREA
ST _ 3+GETAREA
ST FVERRLIST =~ = ~= - T mmeemeiems e ceens o
MVI GETMODE, X'E0*
e MVI GETSP.Xx'00°
XC FREEAREA(16) FREEAREA ~~—~—— 7 -~ -7~ == ===
EJECT
#*t#ttt#tt##*t#t*&t#*l##tt##tt#**#**‘t*t##*#t#****mtt#t#***#**t##***a#
]
* NOW START ALLCCATING THE CORRECT ADDRESSESS.
*
T T AR SR AR KU AR R ER RS AR A AR A AR R AR D AR RS U R AR R AT A kR R kSRR KRR TRk kX
L 5 +SAVEGR1
L 4400(0,5) GET ADDRESS OF REAL MAIN PROGRAM
TTTTTUUTTTTIUTU T T 440(044) o "7 GR 4 HAS THE ADORESS OF REAL ONME
ST 4 ¢SAVENAIN
LA " 544(045) ~ GR 5 POINTS TO THE ARRAY ADORESS
TUTTTTTUTTTTIUTTSY T T 7T OTT§,SAVEGRYL 7 T 77T " "SAVE THE NEW PARMLIST PNTR.,)
*x
__* WANDER THRU THE PARAMETER LIST 70 DETERMINE THE MAX CORE REQ'D
x) . ~oRE e TINL
LA 0,0 ZERO THE WORK REGISTER,
LA 4.0 ZERO THE NORK RtGlST‘R.

TLOCATES EQU T Tk TT o T oTmr mmmmmie s RS & once— oo

_ CLI _ 0(5),X*80* _ CHECK FOR ERRONEOUS PARM LIST
BE ERROR1 ' T T
L 4,4(0,5) GET THE NUMBER OF WJRDS REQ'D
L _440(044) ____THE ACTUAL NUMBER
SRL YS! T NUMBER OF WORDS/2
LA 44,1(0,4) SAFETY FACTOR
SLL 443 PREPARE FOR OOUBLE WORDS
AR 0s46 7 TTTTTTTTTSUM UP THE NUMBER UF DOUBLE WORC
cL! 4(5), X'80" CHECK FOR END UF LIST
LA 5,8(0,5) STEP FOR THE EXT SET
BNE T LOCATES T T T T T T ¢ - Tt
L
. FORCING DOUBLE uoao ALIGNMENT FOR DOUBLE PRECISION ARRAYS,
- SWShJ P80 oLt ’¥ ARRATIe .
ST 0, MAxsxzs FOR THE GET MAIN ROUTINE
LA I.GETLIST
SVC TmggTTT v TTTm=— T —GETMAIN SVC CODE 0 T T T
L 2,FREEAREA Gk 2 HAS THE ADUDRESS OF FREECORE
L 3,FREESIZE . GR 3 HAS THE AMOULNT FO FREE CORE
C T T T 3,MAXSIZE '""“’”“"‘Tesr"xs ALLOCATED EMOUGH = ~
8L ERROR
_ L __ 54SAVEGR1 RESET GR 1
{00p P e ST T <1 e
ST 2:0(0,45) ' CHANGE THE OLD ARRAY ADDRESS
L L 6,4(0,5) PICK UP THE ADLRESS OF #3YTES
L "TTTTTE,0(0e6Y T T GR6 = NUMBER CF WORDS IN ARRAY
SRL 6,1 =HWORDS/ 2
e LA 6¢1(0,6) =hORD==WORDS +1
TTTTTTELLT T 6,3 T T 7T T TTTTaWORDS=MULTIPLE OF 8 C T :
AR 2+6 4 GR- 2 -> NEW FREE AREA -
o cL! 4(57,X780° "CHECK IF LAST ARGUMENT
T LA T T TT5,4810,45) TTTGR 5 => NEW ARRAY LIN LIST —
3NE LooP
R CEJECT
. e e e e e e
. NOW CALL THE REAL MAIN PROGRAM WITH THE NEW PARAMETEK LIST
L
P e Y TSAVEGRL - e e i
L 15,SAVEMAIN
L BALR 14,15 GO TO IT.
. A5 e
* FIRST FREE THE ALLOCATED CORE.
% RETURN TO THE MAIN CALLER NORMALLY,
2 LLER W MO -
RETRUNS EQU *
L L O,FREESIZE
— ——1 ' FREEAREA i —
sve 10 FREE THE ALLOCATED CORE.
.—..RETURNQ E EQU *
- U130 SAVEAREAGG T T T T mme e e e
LA + 0ySAVESIZE FREE UP THE SAVE AREA
LR 1411 RETURN THE ALLOCATED ADDRESS
~svc",“““"""m FTTTTTTITTTTTTUURREE MAIN G T
LM 14412912(13)
I 1. 150) i
g R T T AT e mm et e m e e e
L
» NOT ENOUGH CORE IS ALLOCATED FOR THIS JOB

A et e e B = . e - - -

*

10.

11.

ERROR EQU o _ .
LA LyERRLIST
L . 15,=V(S$SERR])
LA 144RETRUNS
BR 15
"
. d INCORRECT SETUP_OF THE PARAMETER LIST, MISSING =OF BYTES
&
ERRORL EQU *
LA 14,RETURNQ . B
L 15,=V ($ERR2)
B8R 15
EJECT
Ottttttttt o ok ok ok t####t##t#*### R t*#t##*##*ttt#t###*##tttt#*#t##t#*#*l
b]
_____® _ DYNAMIC SAVE AREA AND COMNSTANTS FOR PROGRAM
* THE ADDRESSESES AND CONSTANTS ARE FILLED IN AT EXECUTION TIME
e t##ttt#ttttt#ttt##tt###*##t###*#ttt##t#*#tt###tt##*#t##**###*#*t####*#
LTORG T T T T
DYNASAVE DSECT -
——_ SAVEBEG _ EQU * -
DS OF ”’)
GETLIST EQU *

__GETSIZE DS AL4(MINSIZE) __PARAMETER LIST FOR GETMAIN
GETAREA DS ALY (FREEAREA) ' o T
GETMODE 0S XL1'EOQ? vC MODE

——._GETSP _ _0OS _ _Xtitoo* L SP.O
b]

DS OF

______ FREEAREA DS __ALa(0) ADDRESS OF FREEE CORE AREA
FREESIZE DS 1F10! “NUMBER OF BYTES ALLOCATED
MINSIZE DS 1F¢ Q! MINIMUM CORE REQUIREMENT

——._ MAXSIZE OS ___ _1F'O0' ~~~~~___MAXIMUM CORE REQUIREMENT
x
ERRLIST DOS AL4 (FREEAREA)

__ SAVEAREA DS _18F0! .

SAVEGRL DS OlF'0? Tt T T T T STt
SAVEMAIN DS 1F10!

____ SAVEEND EQU *
SAVESIZE EQU SAVEEND-SAVEBEG ~~ T T T e

END

12,

1

_SUBROUTINE SERRL(ICORE) o $ERR1010
DIMENS [ON 1CORE (4) ‘ — $ERR1020
PRINT 10,ICORE(1)y ICORE(2),1CORE(4) $ERR1030
FORMAT {*ODYNA ERROR: INSUFFICIENT CORE FOR PROGRAM ¢// SERR1049
" ALLOCATED CORE AT 9,28,* OF *, 16,* BYTES, BUT REQUIRED ' ™~ "$ERR1059
9164 BYTES.'//) S$ERR1060
RETURN . . $ERR1070
END S “$ERR1080

“SUBROUTINE "$ERRZ2 ~— ~ ST T T T T T T T T TTTTTSERR 2010
PRINT 10 $ERR 2020
—--.——..FORMAT (*ODYNA ERROR: INCCRRECT PARAMETER LIST SETUP') $ERR 2039
STOP T T T T T gERR 2040

END $ERR2059

13.

BIBLIOGRAPHY

IBM System/360 Opeating System, Assembler Language, C28-6514-5.
IBM System/360 Opeating System, Concepts and Facilities, C28-6535-4.

IBM System/360 Opetating System Fortran IV (G and H) Programmers
Guide, GC28-6817-1.

IBM System/360 Scientific Subroutine Package, (360A-CM-03X) Version III,
Programmers Manual, H20-0205-3.

IBM System/360 Operating System, Supervisor and Data Management Services,
C28-6646-0.

